Use of deep learning to develop continuous-risk models for adverse event prediction from electronic health records

Nat Protoc. 2021 Jun;16(6):2765-2787. doi: 10.1038/s41596-021-00513-5. Epub 2021 May 5.

Abstract

Early prediction of patient outcomes is important for targeting preventive care. This protocol describes a practical workflow for developing deep-learning risk models that can predict various clinical and operational outcomes from structured electronic health record (EHR) data. The protocol comprises five main stages: formal problem definition, data pre-processing, architecture selection, calibration and uncertainty, and generalizability evaluation. We have applied the workflow to four endpoints (acute kidney injury, mortality, length of stay and 30-day hospital readmission). The workflow can enable continuous (e.g., triggered every 6 h) and static (e.g., triggered at 24 h after admission) predictions. We also provide an open-source codebase that illustrates some key principles in EHR modeling. This protocol can be used by interdisciplinary teams with programming and clinical expertise to build deep-learning prediction models with alternate data sources and prediction tasks.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Deep Learning*
  • Electronic Health Records*
  • Humans
  • Research Design*
  • Risk Assessment / methods*
  • Software
  • Workflow