Surface-enhanced Raman spectroscopy (SERS) is a promising ultrasensitive analysis technology due to outstanding molecular fingerprint identification. However, the measured molecules generally need to be adsorbed on a SERS substrate, which makes it difficult to detect weakly adsorbed molecules, for example, the volatile organic compound (VOC) molecules. Herein, we developed a kind of a SERS detection method for weak adsorption molecules with Au@ZIF-8 core-shell nanoparticles (NPs). The well-uniformed single- and multicore-shell NPs can be synthesized controllably, and the shell thickness of the ZIF-8 was able to be precisely controlled (from 3 to 50 nm) to adjust the distance and electromagnetic fields between metal nanoparticles. After analyzing the chemical and physical characterization, Au@ZIF-8 core-shell NPs were employed to detect VOC gas by SERS. In contrast with multicore or thicker-shell nanoparticles, Au@ZIF-8 with a shell thickness of 3 nm could efficiently probe various VOC gas molecules, such as toluene, ethylbenzene, and chlorobenzene. Besides, we were capable of observing the process of toluene gas adsorption and desorption using real-time SERS technology. As observed from the experimental results, this core-shell nanostructure has a promising prospect in diverse gas detection and is expected to be applied to the specific identification of intermediates in catalytic reactions.