Methoxylated polychlorinated biphenyls (MeO-PCBs) are overlooked metabolites of PCBs. In general, they are more toxic to plants than their parent congeners. However, information on the fate of MeO-PCBs and the relationship between methoxylated, hydroxylated and sulfated metabolites of PCBs in plants is scarce. In this work, poplar plants (Populus deltoides × nigra, DN34) were hydroponically and separately exposed to 4'-methoxy-4-monochlorobiphenyl (4'-MeO-PCB 3) and 4'-PCB 3 sulfate for 10 days to investigate the uptake, translocation and metabolism of MeO-PCBs and the relationship between methoxy-PCBs, hydroxyl-PCBs and PCB sulfates within plants. Results showed that 4'-MeO-PCB 3 and 4'-PCB 3 sulfate were taken up by the roots of poplar plants and translocated from roots to shoots and leaves. 4'-OH-PCB 3 and 4'-PCB 3 sulfate were identified as the hydroxylated metabolite and sulfate metabolite of 4'-MeO-PCB 3 in poplar, respectively. In the backward reaction, 4'-OH-PCB 3 and 4'-MeO-PCB 3 were found as metabolites of 4'-PCB 3 sulfate. For exposure groups, the yields of 4'-OH-PCB 3 produced from 4'-MeO-PCB 3 and 4'-PCB 3 sulfate were 1.29% and 0.13% respectively. The yield of 4'-PCB 3 sulfate which originated from 4'-MeO-PCB 3 in wood and root samples of exposure groups was only 0.02%. Only 0.04% of the initial mass of 4'-PCB 3 sulfate was transformed to 4'-MeO-PCB 3 in the exposure groups. The sulfation yield of 4'-OH-PCB 3 was higher than hydrolysis yield of 4'-PCB 3 sulfate, indicating that formation of PCB sulfates was predominant over the reverse reaction, the formation of hydroxy-PCBs. These results provide new perspective on the transport, metabolism, and fate of MeO-PCBs, and also help to better understand sources of OH-PCBs and PCB sulfates in the environment. This study provides the first evidence of interconversion of sulfate metabolites from methoxy-PCBs and methoxy-PCBs from PCB sulfates.
Keywords: Interconversion; MeO-PCB 3; OH-PCB 3; PCB 3 sulfates; Poplar plants.
Copyright © 2021 Elsevier B.V. All rights reserved.