Cell-free DNA, measured as donor-derived cell-free DNA is developed as a non-specific biomarker for allograft injury and transplant rejection. However, cell-free DNA characteristics are more specific, its fragment length, nucleotide content, and composition, as well as the tissue source of origin, are intrinsically linked to the underlying disease pathogenesis, showing distinct features in acute cellular rejection and antibody-mediated rejection for example. Further, cell-free DNA and cell-free mitochondrial DNA can directly trigger tissue injury as damage-associated molecular patterns through three major intracellular receptors, toll-like receptor 9 , cyclic guanosine monophosphate-adenosine monophosphate synthase, and inflammasomes (i.e., absent in melanoma 2: AIM2). Therefore, in addition to its role as a non-specific marker for allograft injury, cell-free DNA analysis may be used to phenotype transplant rejection, and to non-invasively point the underlying molecular mechanisms with allograft injury. Novel treatment approaches targeting these cell-free DNA pathways may be useful to treat transplant rejection and prevent end-organ dysfunction. In this review, we discuss the link between cell-free DNA characteristics and disease, the role of cell-free DNA as a damage-associated molecular pattern, and novel therapeutics targeting these cell-free DNA molecular pathways and their potential utility to treat transplant rejection.
Published by Elsevier Inc.