Pathophysiological In Vitro Profile of Neuronal Differentiated Cells Derived from Niemann-Pick Disease Type C2 Patient-Specific iPSCs Carrying the NPC2 Mutations c.58G>T/c.140G>T

Int J Mol Sci. 2021 Apr 13;22(8):4009. doi: 10.3390/ijms22084009.

Abstract

Niemann-Pick type C2 (NP-C2) disease is a rare hereditary disease caused by mutations in the NPC2 gene. NPC2 is a small, soluble protein consisting of 151 amino acids, primarily expressed in late endosomes and lysosomes (LE/LY). Together with NPC1, a transmembrane protein found in these organelles, NPC2 accomplishes the exclusion of cholesterol; thus, both proteins are essential to maintain cellular cholesterol homeostasis. Consequently, mutations in the NPC2 or NPC1 gene result in pathophysiological accumulation of cholesterol and sphingolipids in LE/LY. The vast majority of Niemann-Pick type C disease patients, 95%, suffer from a mutation of NPC1, and only 5% display a mutation of NPC2. The biochemical phenotype of NP-C1 and NP-C2 appears to be indistinguishable, and both diseases share several commonalities in the clinical manifestation. Studies of the pathological mechanisms underlying NP-C2 are mostly based on NP-C2 animal models and NP-C2 patient-derived fibroblasts. Recently, we established induced pluripotent stem cells (iPSCs), derived from a donor carrying the NPC2 mutations c.58G>T/c.140G>T. Here, we present a profile of pathophysiological in vitro features, shared by NP-C1 and NP-C2, of neural differentiated cells obtained from the patient specific iPSCs. Profiling comprised a determination of the NPC2 protein level, detection of cholesterol accumulation by filipin staining, analysis of oxidative stress, and determination of autophagy. As expected, the NPC2-deficient cells displayed a significantly reduced amount of NPC2 protein, and, accordingly, we observed a significantly increased amount of cholesterol. Most notably, NPC2-deficient cells displayed only a slight increase of reactive oxygen species (ROS), suggesting that they do not suffer from oxidative stress and express catalase at a high level. As a site note, comparable NPC1-deficient cells suffer from a lack of catalase and display an increased level of ROS. In summary, this cell line provides a valuable tool to gain deeper understanding, not only of the pathogenic mechanism of NP-C2, but also of NP-C1.

Keywords: Niemann-Pick type C2 (NP-C2); autophagy; cholesterol; filipin; hiPSC; oxidative stress; patch clamp.

MeSH terms

  • Antioxidants / metabolism
  • Autophagy
  • Cell Differentiation*
  • Cholesterol / metabolism
  • HEK293 Cells
  • Humans
  • Induced Pluripotent Stem Cells / metabolism
  • Induced Pluripotent Stem Cells / pathology*
  • Male
  • Mutation / genetics*
  • Neuroglia / metabolism
  • Neurons / pathology*
  • Niemann-Pick Disease, Type C / pathology*
  • Niemann-Pick Disease, Type C / physiopathology*
  • Oxidative Stress
  • Reactive Oxygen Species / metabolism
  • Vesicular Transport Proteins / genetics*

Substances

  • Antioxidants
  • NPC2 protein, human
  • Reactive Oxygen Species
  • Vesicular Transport Proteins
  • Cholesterol

Supplementary concepts

  • Niemann-Pick disease, type C2