In Vitro Activity of a Novel Siderophore-Cephalosporin LCB10-0200 (GT-1), and LCB10-0200/Avibactam, against Carbapenem-Resistant Escherichia coli, Klebsiella pneumoniae, Acinetobacter baumannii, and Pseudomonas aeruginosa Strains at a Tertiary Hospital in Korea

Pharmaceuticals (Basel). 2021 Apr 16;14(4):370. doi: 10.3390/ph14040370.

Abstract

The siderophore-antibiotic conjugate LCB10-0200 (a.k.a. GT-1) has been developed to combat multidrug-resistant Gram-negative bacteria. In this study, the in vitro activity of LCB10-0200 and LCB10-0200/avibactam (AVI) has been investigated against carbapenem-resistant Escherichia coli, Klebsiella pneumoniae, Acinetobacter baumannii, and Pseudomonas aeruginosa. Minimal inhibitory concentrations (MICs) of LCB10-0200, LCB10-0200/AVI, aztreonam, aztreonam/AVI, ceftazidime, ceftazidime/AVI, and meropenem were measured using the agar dilution method. Whole genome sequencing was performed using Illumina and the resistome was analyzed. LCB10-0200 displayed stronger activity than the comparator drugs in meropenem-resistant E. coli and K. pneumoniae, and the addition of AVI enhanced the LCB10-0200 activity to MIC ≤ 0.12 mg/L for 90.5% of isolates. In contrast, whereas LCB10-0200 alone showed potent activity against meropenem-resistant A. baumannii and P. aeruginosa at MIC ≤ 4 mg/L for 84.3% of isolates, the combination with AVI did not improve its activity. LCB10-0200/AVI was active against CTX-M-, SHV-, CMY-, and KPC- producing E. coli and K. pneumoniae, while LCB10-0200 alone was active against ADC-, OXA-, and VIM- producing A. baumannii and P. aeruginosa. Both LCB10-0200 and LCB10-0200/AVI displayed low activity against IMP- and NDM- producing strains. LCB10-0200 alone exhibited strong activity against selected strains. The addition of AVI significantly increased LCB10-0200 activity against carbapenem-resistant E. coli, K. pneumoniae.

Keywords: LCB10-0200 (GT-1); LCB10-0200/Avibactam; carbapenem resistance; siderophore-antibiotic conjugate.