Background: The regulation of thyroid hormones in the early stages of gestation plays a crucial role in the outcome of a pregnancy. Furthermore, thyroid hormones are fundamental for the fetal development of all organs, including endocrine hormone changes in uterus. Endocrine disrupting chemicals have been shown to have an effect on thyroid hormone homeostasis in newborns, which affects their later development. Few studies have proposed how phthalates could alter thyroid function through several mechanisms and the possible effects on thyroid hormone homeostasis of phthalates on pregnant women. However, the effects of cord blood phthalates and prenatal phthalate exposure on thyroid hormones in newborns remain unclear.
Objectives: We aim to follow up on our previous established subjects and determine the correlation between phthalate exposure and thyroid hormones in pregnant women and newborns.
Materials and methods: We recruited 61 pregnant women from the Obstetrics and Gynecology Department of a medical hospital in southern Taiwan and followed up. High performance liquid chromatography electrospray ionization tandem mass spectrometry (HPLC-ESI-MS/MS) was used to analyze urine samples for five phthalate metabolites. Serum levels of thyroid hormones were analyzed using electrochemoluminescence immunoassay (ECLIA) method. We used Spearman and Pearson correlation coefficients to evaluate the correlation between each phthalate metabolites in serum and the thyroid hormone levels in fetus and parturient. Finally, multiple logistic regression was used to explore the relationship between hormones and their corresponding phthalate metabolites in cord blood.
Results: High MBP in cord blood was correlated with negative cord serum TSH in newborns (r = -0.25, p < 0.06). By using multiple linear regression after adjusting for potential confounders (gestational and maternal age), cord serum MBP levels showed a negative association with cord serum TSH (β = 0.217, p < 0.05), cord serum T4 (β = 1.71, p < 0.05) and cord serum T4 × TSH (β = 42.8, p < 0.05), respectively.
Conclusion: We found that levels of cord serum TSH and T4 in newborns was significantly negatively associated with cord serum MBP levels after adjusting for significant covariate. The fall in TSH in newborns may potentially be delaying their development.
Keywords: birth cohort; cord blood; phthalate metabolites; thyroid hormone.