Secondary Structure in Nonpeptidic Supramolecular Block Copolymers

Acc Chem Res. 2021 May 18;54(10):2397-2408. doi: 10.1021/acs.accounts.1c00028. Epub 2021 Apr 29.

Abstract

Proteins contain a level of complexity-secondary and tertiary structures-that polymer chemists aim to imitate. The bottom-up synthesis of protein-mimicking polymers mastering sequence variability and dispersity remains challenging. Incorporating polymers with predefined secondary structures, such as helices and π-π stacking sheets, into block copolymers circumvents the issue of designing and predicting one facet of their 3D architecture. Block copolymers with well-defined secondary-structure elements formed by covalent chain extension or supramolecular self-assembly may be considered for localized tertiary structures.In this Account, we describe a strategy toward block copolymers composed of units bearing well-defined secondary structures mixed in a "plug-and-play" manner that approaches a modicum of the versatility seen in nature. Our early efforts focused on the concept of single-chain collapse to achieve folded secondary structures through either hydrogen bonding or quadrupole attractive forces. These cases, however, required high dilution. Therefore, we turned to the ring-opening metathesis polymerization (ROMP) of [2.2]paracyclophane-1,9-dienes (pCpd), which forms conjugated, fluorescent poly(p-phenylenevinylene)s (PPVs) evocative of β-sheets. Helical building blocks arise from polymers such as poly(isocyanide)s (PICs) or poly(methacrylamide)s (PMAcs) containing bulky, chiral side groups while the coil motif can be represented by any flexible chain; we frequently chose poly(styrene) (PS) or poly(norbornene) (PNB). We installed moieties for supramolecular assembly at the chain ends of our "sheets" to combine them with complementary helical or coil-shaped polymeric building blocks.Assembling hierarchical materials tantamount to the complexity of proteins requires directional interactions with high specificity, covalent chain extension, or a combination of both chemistries. Our design is based on functionalized reversible addition-fragmentation chain-transfer (RAFT) agents that allowed for the introduction of recognition motifs at the terminus of building blocks and chain-terminating agents (CTAs) that enabled the macroinitiation of helical polymers from the chain end of ROMP-generated sheets and/or coils. To achieve triblock copolymers with a heterotelechelic helix, we relied on supramolecular assembly with helix and coil-shaped building blocks. Our most diverse structures to date comprised a middle block of PPV sheets, parallel or antiparallel, and supramolecularly or covalently linked, respectively, end-functionalized with molecular recognition units (MRUs) for orthogonal supramolecular assembly. We explored PPV sheets with multiple folds achieved by chain extension using alternating pCpd and phenyl-pentafluorophenyl β-hairpin turns. Using single-molecule polarization spectroscopy, we showed that folding occurs preferentially in multistranded over double-stranded PPV sheets. Our strategy toward protein-mimicking and foldable polymers demonstrates an efficient route toward higher ordered, well-characterized materials by taking advantage of polymers that naturally manifest secondary structures. Our studies demonstrate the retention of distinct architectures after complex assembly, a paradigm that we believe may extend to other polymeric folding systems.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Review

MeSH terms

  • Macromolecular Substances / chemistry
  • Models, Molecular
  • Molecular Structure
  • Polymerization
  • Polymers / chemical synthesis
  • Polymers / chemistry*

Substances

  • Macromolecular Substances
  • Polymers