High-molecular-weight dextrin (WS-1000) was produced from waxy corn starch and enzymatically modified to link glucose by α-1,6 glycosidic bond at the terminal point of the glucose chain, forming MWS-1000. In this study, the physical properties of MWS-1000 were characterized, and the advantages of its use as a food modifier were described. From rheological and calorimetric studies, it was found that MWS-1000 does not undergo retrogradation, but it does not prevent the retrogradation of WS-1000, suggesting that they have no intermolecular interaction in solution. Investigation of the effect of MWS-1000 on the viscoelasticity of gelatinized wheat starch showed that in the linear viscoelastic region, storage modulus decreased and tan δ increased with increase in replaced MWS-1000 content. In addition, it was confirmed that gelatinized starch containing MWS-1000 showed viscoelastic behavior similar to that of commercially available custard cream.
Keywords: differential scanning calorimetry; physical modifier; retrogradation; viscoelasticity; viscosity.
© The Author(s) 2021. Published by Oxford University Press on behalf of Japan Society for Bioscience, Biotechnology, and Agrochemistry.