Aim and objective: To assess microtensile bond strength (μTBS) of two types of luting cement to monolithic zirconia and dentin following various surface modifications and aging.
Materials and methods: Monolithic zirconia blocks were divided into four main groups. Group N: no surface modification; Group SB: sandblasted using 50 μm Al2O3 particles. Group GH: glazed with a thin film of low-fusing porcelain glaze and etched with 10% hydrofluoric acid for 60 seconds. Group CJ: sandblasted with CoJet sand. Surface-treated ceramic blocks were bonded to dentin using either self-adhesive cement or resin-modified glass ionomer cement and submitted to 3 or 150 days of water storage protocol with aging. The specimens were subjected to tensile force until de-bonding. Surface roughness (Ra, μm) was assessed after surface treatment. Analysis of variance (ANOVA) tests followed by Tukey's tests were used to analyze the data (α = 0.05).
Results: Surface modification using selective infiltration etching (SIE) showed significantly higher μTBS (p < 0.05) compared to tribochemical silica coating, sandblasting, and no treatment groups. The surface roughness of the SB and CJ groups were statistically higher compared to GH and N groups.
Conclusion: Selective glass infiltration etching was an effective method in altering the surface properties, creating a strong and durable bond to monolithic zirconia.
Clinical significance: Surface treatment procedures using SIE techniques combined with the use of universal 10-Methacryloyloxydecyl dihydrogen phosphate (MDP)-containing adhesives could establish a long-lasting and strong bonding to monolithic zirconia restorations. Resin-modified glass-ionomer cement (RMGIC) is an alternative luting cement for monolithic zirconia based on the assessment of its bond strength and bond durability.
Keywords: Bonding; Cement; Ceramic primer monolithic zirconia Selective infiltration etching..