Although cytology and pleural biopsy of pleural effusion (PE) are the gold standards for diagnosing malignant pleural effusion (MPE), these tools' diagnostic accuracy is plagued by some limitations such as low sensitivity, considerable inter-observer variation and invasiveness. The assessment of PE biomarkers may hence be seen as an objective and non-invasive diagnostic alternative in MPE diagnostics. In this review, we summarize the characteristics and diagnostic accuracy of available PE biomarkers, including carcinoembryonic antigen (CEA), neuron-specific enolase (NSE), carbohydrate antigens 125 (CA125), carbohydrate antigen 19-9 (CA19-9), carbohydrate antigen 15-3 (CA15-3), a fragment of cytokeratin 19 (CYFRA 21-1), chitinase-like proteins (CLPs), vascular endothelial growth factor (VEGF) and its soluble receptor, endostatin, calprotectin, cancer ratio, homocysteine, apolipoprotein E (Apo-E), B7 family members, matrix metalloproteinase (MMPs) and tissue-specific inhibitors of metalloproteinases (TIMPs), reactive oxygen species modulator 1 (Romo1), tumor-associated macrophages (TAMs) and monocytes, epigenetic markers (e.g., cell-free microRNA and mRNA). We summarized the evidence from systematic review and meta-analysis for traditional tumor markers' diagnostic accuracy. According to the currently available evidence, we conclude that the traditional tumor markers have high specificity (around 0.90) but low sensitivity (around 0.50). The diagnostic accuracy of novel tumor markers needs to be validated by further studies. None of these tumor biomarkers would have sufficient diagnostic accuracy to confirm or exclude MPE when used alone. A multi-biomarker strategy, also encompassing the use of artificial intelligence algorithms, may be a valuable perspective for improving the diagnostic accuracy of MPE.
Keywords: Tumor marker; diagnosis; malignant pleural effusion (MPE); review.
2021 Translational Lung Cancer Research. All rights reserved.