Specific modification and self-transport of porphyrins and their multi-mechanism cooperative antitumor studies

J Mater Chem B. 2021 Apr 14;9(14):3180-3191. doi: 10.1039/d0tb02847a. Epub 2021 Mar 23.

Abstract

In order to reduce the toxicity and side effects of anti-tumor drugs and improve their therapeutic effect against cancer, photodynamic and chemical combination therapy has been exploited. However, the complicated preparation and metabolic toxicity of photosensitizer-loaded materials remain major obstacles for bioapplications. In this study, we designed and prepared a specific photosensitizer self-transporting drug-delivery system. First, 5,10,15,20-tetrakis(4-aminophenyl)-21H,23H-porphine (TAPP) was modified using specific molecules of d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) with a certain antitumor effect, to prepare a specific fluorescent amphiphilic system (TAPP-TPGS). Then, the drug-loaded fluorescence nanomicelle (TAPP-TPGS/PTX) was formed via self-assembly using the amphiphilic system and the anticancer drug paclitaxel (PTX). The carrier material could be used as a drug tracer and cancer therapy reagent to synergistically trace the chemotherapy drug and treat cancers. The biocompatibility and the enhanced antitumor effect of TAPP-TPGS/PTX were confirmed by in vitro and in vivo experiments. To detect the synergistic anticancer effect enhanced by TPGS, TAPP-mPEG synthesized with a similar method as TAPP-TPGS was used for a comparative analysis. The results showed that the excellent synergistic anticancer effect of the TAPP-TPGS/PTX was enhanced due to the introduction of TPGS. Thus, the specific porphyrin self-transporting nanomicelle is a very promising carrier material for applications in biomedicine.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Antineoplastic Agents / chemical synthesis
  • Antineoplastic Agents / chemistry
  • Antineoplastic Agents / pharmacology*
  • Cell Proliferation / drug effects
  • Cell Survival / drug effects
  • Drug Screening Assays, Antitumor
  • Fluorescent Dyes / chemical synthesis
  • Fluorescent Dyes / chemistry
  • Fluorescent Dyes / pharmacology*
  • Humans
  • Micelles
  • Molecular Structure
  • Optical Imaging
  • Particle Size
  • Photosensitizing Agents / chemical synthesis
  • Photosensitizing Agents / chemistry
  • Photosensitizing Agents / pharmacology*
  • Porphyrins / chemical synthesis
  • Porphyrins / chemistry
  • Porphyrins / pharmacology*
  • Reactive Oxygen Species / analysis
  • Reactive Oxygen Species / metabolism
  • Tumor Cells, Cultured

Substances

  • Antineoplastic Agents
  • Fluorescent Dyes
  • Micelles
  • Photosensitizing Agents
  • Porphyrins
  • Reactive Oxygen Species