A gold-catalyzed cycloisomerization of 2-indolyl-3-[(trimethylsilyl)ethynyl)]quinoxalines with concomitant 1,2-silyl shift forms 6-(trimethylsilyl)indolo[3,2-a]phenazines in moderate to excellent yield. These silylated heterocycles are readily transformed into 6-aryl-indolo[3,2-a]phenazines in moderate to good yield by one-pot ipso-iodination Suzuki coupling. The title compounds represent a novel type of tunable luminophore. Structure-property relationships for 6-aryl-indolo[3,2-a]phenazines obtained from Hammett correlations with σp+ substituent parameters indicate that emission maxima, Stokes shifts, and fluorescence quantum yields can be fine-tuned by the remote para-aryl substituent. Furthermore, indolo[3,2-a]phenazines were found to exhibit interesting activities against medically relevant pathogens such as the Apicomplexa parasite Toxoplasma gondii with an IC50 of up to 0.67±0.13 μM. Thus, these compounds are promising candidates for novel anti-parasitic therapies.
Keywords: Toxoplasma gondii; bioactivity; cycloisomerization; heterocycles; iodination; multicomponent reactions.
© 2021 The Authors. Published by Wiley-VCH GmbH.