Two porous Ni-MOFs based on 2,4,6-tris(pyridin-4-yl)-1,3,5-triazine showing solvent determined structures and distinctive sorption properties toward CO2 and alkanes

Dalton Trans. 2021 Apr 21;50(15):5244-5250. doi: 10.1039/d1dt00136a.

Abstract

By regulating the solvent used for synthesis, two porous Ni-MOFs, namely {[Ni3(BTC)2(TPT)2/3(H2O)4.08(MeOH)0.92]·2DMF·0.5H2O·0.5MeOH}n (1) and {[Ni3(BTC)2(TPT)2(H2O)6]·6DMF}n (2) (H3BTC = 1,3,5-benzenetricarboxylic acid, TPT = 2,4,6-tris(pyridin-4-yl)-1,3,5-triazine, DMF = N,N-dimethylformamide, and MeOH = methanol) were obtained. Compound 1 reveals a rigid 3D framework, while compound 2 shows a flexible 3-fold interpenetrated framework. Compound 1 exhibits a selective adsorption of CO2 due to the sieving effect of the rigid framework containing two types of cages with small apertures. Noteworthily, the flexible compound 2 displays an obviously guest-induced structural transformation. The desolvated compound 2 reveals a much higher capacity toward CO2 and n-C4H10 than those of N2 CH4, C2H6 and C3H8.