With the urgent need to explore high-performance electrochemical energy storage systems, rechargeable Al-ion batteries (AIBs) have attracted attention from researchers and engineers due to their traits, such as abundance and safety. Among all the issues waiting to be solved, the development of a reliable positive electrode material with high specific capacity is an absolute priority for the commercialization of AIBs. Sulfur has a natural advantage when used as the active material, and its theoretical specific capacity is as high as 1675 mA h g-1. MOFs and MOF-derived materials have been proved to be promising hosts for Li-S batteries. Herein, we report a novel Al-S battery system employing MOF (ZIF-67) and MOF-derived materials as sulfur host materials. After being chemically combined with sulfur, the composite still maintains its unique well-defined polyhedron morphology. The voltage hysteresis phenomenon is effectively alleviated with the aid of the host matrix. DFT calculations confirm that ZIF-67 and carbonized ZIF-67-700 polyhedrons can act as an anchor point towards sulfur (S8) and polysulfides (Al2S3, Al2S6, Al2S12, and Al2S18), preventing the detrimental dissolution and shuttle effect. These findings can enlighten future researchers regarding Al-S batteries and broaden the application of MOFs in the field of electrochemical energy storage systems.