Shaping liquid crystals (LCs) into arrays of defect patterns enables the design of composite materials with new stimuli-responsive properties. Self-assembled defect assemblies that may arise in layered smectic A (SmA) LCs such as focal conic domains (FCDs), exhibit remarkable optical features and abilities for ordering nanoparticles. However, such SmA defect patterns are essentially electrically irreversible, which currently limits their adjustability in a dynamic way. Here, in situ polymerization of the texture of SmA FCDs allows transferring them into more electrically responsive LC phases, such as nematic, making possible a dynamic switch between different textural and optical states of FCDs in a reversible manner with voltage. Moreover, the method readily enables to program the operating temperature range of the polymer/LC composite from its chemical composition, adapting the system to various potential uses. This approach may increment new applications of SmA defect patterns such as voltage-tunable privacy layers and may further inspire the design of LC-based nanostructured composite and hybrid materials with new functions that can be dynamically tuned with voltage.
Keywords: focal conic domains; polymer/liquid crystal composites; self-assembly; smectic A liquid crystals; topological defects.
© 2021 Wiley-VCH GmbH.