The ever-growing threats of bacterial infection and chronic wound healing have provoked an urgent need for novel antibacterial wound dressings. In this study, we developed a wound dressing for the treatment of infected wounds, which can reduce the inflammatory period (through the use of gentamycin sulfate (GS)) and enhance the granulation stage (through the addition of platelet-rich plasma (PRP)). Herein, the sustained antimicrobial CMC/GMs@GS/PRP wound dressings were developed by using gelatin microspheres (GMs) loading GS and PRP, covalent bonding to carboxymethyl chitosan (CMC). The prepared dressings exhibited high water uptake capability, appropriate porosity, excellent mechanical properties, sustain release of PRP and GS. Meanwhile, the wound dressing showed good biocompatibility and excellent antibacterial ability against Gram-negative and Gram-positive bacteria. Moreover, in vivo experiments further demonstrated that the prepared dressings could accelerate the healing process of E. coli and S. aureus-infected full-thickness wounds in vivo, reepithelialization, collagen deposition and angiogenesis. In addition, the treatment of CMC/GMs@GS/PRP wound dressing could reduce bacterial count, inhibit pro-inflammatory factors (TNF-α, IL-1β and IL-6), and enhance anti-inflammatory factors (TGF-β1). The findings of this study suggested that biocompatible wound dressings with dual release of GS and PRP have great potential in the treatment of chronic and infected wounds.
Keywords: Carboxymethyl chitosan; microspheres; platelet-rich plasma; wound infections.