Preclinical models of ischemia/reperfusion injury (RI) demonstrate the deleterious effects of permeability transition pore complex (PTPC) opening in the first minutes upon revascularization of the occluded vessel. The ATP synthase c subunit (Csub) influences PTPC activity in cells, thus impacting tissue injury. A conserved glycine-rich domain in Csub is classified as critical because, when mutated, it modifies ATP synthase properties, protein interaction with the mitochondrial calcium (Ca2+) uniporter complex, and the conductance of the PTPC. Here, we document the role of a naturally occurring mutation in the Csub-encoding ATP5G1 gene at the G87 position found in two ST-segment elevation myocardial infarction (STEMI) patients and how PTPC opening is related to RI in patients affected by the same disease. We report a link between the expression of ATP5G1G87E and the response to hypoxia/reoxygenation of human cardiomyocytes, which worsen when compared to those expressing the wild-type protein, and a positive correlation between PTPC and RI.
Keywords: ATP synthase; PTP; STEMI patients; cardiovascular diseases; glycine-rich domain; ischemia; mitochondria; reperfusion injury; subunit c.
Copyright © 2021 The Authors. Published by Elsevier Inc. All rights reserved.