The recent genomic characterization of patient specimens has started to reveal the landscape of somatic alterations in clinical prostate cancer (CaP) and its association with disease progression and treatment resistance. The extent to which such alterations impact hallmarks of cancer is still unclear. Here, we interrogate genomic data from thousands of clinical CaP specimens that reflect progression from treatment-naïve, to castration-recurrent, and in some cases, neuroendocrine CaP for alterations in cell cycle-associated and -regulated genes, which are central to cancer initiation and progression. We evaluate gene signatures previously curated to evaluate G1-S and G2-M phase transitions or to represent the cell cycle-dependent proteome. The resulting CaP (stage)-specific overview confirmed the presence of well-known driver alterations impacting, for instance, the genes encoding p53 and MYC, and uncovered novel previously unrecognized mutations that affect others such as the PKMYT1 and MTBP genes. The cancer dependency and drugability of representative genomically altered cell cycle determinants were verified also. Taken together, these analyses on hundreds of often less-characterized cell cycle regulators expand considerably the scope of genomic alterations associated with CaP cell proliferation and cell cycle and isolate such regulatory proteins as putative drivers of CaP treatment resistance and entirely novel therapeutic targets for CaP therapy.
Keywords: cell proliferation; driver mutation; precision medicine; treatment resistance.