The development of low-cost, high-efficiency catalysts for the hydrogen evolution reaction is important for hydrogen production. In this study we investigate hydrogen adsorption at the interfaces of C/BN hetero-nanotubes using first-principles density functional theory calculations. Substantial charge redistributions associated with states near the Fermi level occur at the interfaces. More importantly, such electronic modification can enhance hydrogen adsorption at the interfacial atoms. As a result, the adsorption free energies ΔGH*of hydrogen for the interfaces range from -0.26 to 0.30 eV, depending on hydrogen coverage. These values are much closer to zero than those for the basal plane, suggesting that the interfaces could be active sites for the hydrogen evolution reaction. The interfacial adsorption sites show a distinctive hybridization between the H s and C p orbitals, which accounts for the enhanced hydrogen adsorption at the interfaces. These findings have important implications for hydrogen energy applications.
Keywords: density functional theory; hetero-nanotubes; hydrogen evolution reaction; interface.
© 2021 IOP Publishing Ltd.