Exploring prevalence of potential pathogens and fecal indicators in geographically distinct river systems through comparative metagenomics

Environ Pollut. 2021 Aug 1:282:117003. doi: 10.1016/j.envpol.2021.117003. Epub 2021 Mar 23.

Abstract

Microbial communities are considered as vital members to reflect the health of a riverine system. Among them, pathogenic and fecal indicators imply health risks involved with potability of river water. The present study explores the diverse microbial communities, distribution pattern of potential pathogens, and fecal indicators between the geographically distinct Himalayan and Peninsular river systems of India. It also inquires into the environmental factors associated with community variance and distribution pattern of microbial indicators. The application of high-throughput amplicon sequencing approach unveiled significant demarcation (p < 0.004, Anosim R = 0.62) of samples suggesting unique microbial diversities in these two river sediments. Random forest analysis revealed Desulfobulbulus, PSB_M_3, and Opitutus in Himalayan, while DA101, Bacillus, and Streptomyces in the Peninsular as significant contributors to develop overall dissimilarity between the river systems. Permutational multivariate analysis of variance and co-occurrence network analysis were used to study the relationships between microbial taxa and environmental factors. Amongst the various studied environmental parameters, pH, K, Ca, Mg, Ba, and Al in the Himalayan and salinity, Na, temperature, and Th in the Peninsular significantly influenced shaping of distinct microbial communities. Furthermore, the potential pathogenic genera, including Flavobacterium, Clostridium, Arcobacter, Pseudomonas, and Bacillus were highly prevalent in both the river systems. Arcobacter, Clostridium, Acinetobacter, Bacteroides, and Caloramator were the prominent fecal indicators in these river systems. Our findings provide salient information about the crucial role and interplay between various environmental factors and anthropogenic influences in framing the microbiome of the distinct river systems in India. Moreover, assessing potential pathogenic and fecal indicators suggest the public health risk associated with untreated sewage discharge into these water sources. The detection of various F/S indicators and potentially pathogenic bacteria in Himalayan and Peninsular river systems emphasize the urgent need for future monitoring and management of major riverine systems in India.

Keywords: Edaphic factors; Fecal indicators; Metagenomics; Microbial community; Pathogenic microbes; River sediments.

MeSH terms

  • Environmental Monitoring
  • Feces
  • India
  • Metagenomics*
  • Prevalence
  • Rivers*