Objectives: Distal aortic perfusion (DaP) is a widely accepted protective adjunct facilitating early reinstitution of visceral perfusion during extended thoracic and thoraco-abdominal aortic repair. DaP has also been suggested to secure distal inflow to the paraspinal collateral network via the hypogastric arteries and thereby reduce the risk of spinal cord ischaemia. However, an increase in cerebrospinal fluid (CSF) pressure is frequently observed during thoracoabdominal aortic aneurysm repair. The aim of this study was to evaluate the effects of DaP on regional spinal cord blood flow (SCBF) during descending aortic cross-clamping and iatrogenic elevation of cerebrospinal fluid pressure.
Methods: Eight juvenile pigs underwent central cannulation for cardiopulmonary bypass according to our established experimental protocol followed by aortic cross-clamping of the descending thoracic and abdominal aorta-mimicking sequential aortic clamping-with the initiation of DaP. Thereafter, CSF pressure elevation was induced by the infusion of blood plasma until baseline CSF pressure was tripled. At each time-point, microspheres of different colours were injected allowing for regional SCBF analysis.
Results: DaP led to a pronounced hyperperfusion of the distal spinal cord [SCBF up to 480%, standard deviation (SD): 313%, compared to baseline]. However, DaP provided no or only limited additional flow to the upper and middle segments of the spinal cord (C1-Th7: 5% of baseline, SD: 5%; Th8-L2: 24%, SD: 39%), which was compensated by proximal flow only at C1-Th7 level. Furthermore, DaP could not counteract an experimental CSF pressure elevation, which led to a further decrease in regional SCBF most pronounced in the mid-thoracic spinal cord segment.
Conclusions: Protective DaP during thoraco-abdominal aortic repair may be associated with inadequate spinal protection particularly at the mid-thoracic spinal cord level ('watershed area') and result in the adverse effect of a potentially dangerous hyperperfusion of the distal spinal cord segments.
Keywords: Collateral network; Distal perfusion; Paraparesis; Paraplegia; Spinal cord injury.
© The Author(s) 2021. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.