Motor and sensory features successfully decode autism spectrum disorder and combine with the original RDoC framework to boost diagnostic classification

Sci Rep. 2021 Apr 9;11(1):7839. doi: 10.1038/s41598-021-87455-w.

Abstract

Sensory processing and motor coordination atypicalities are not commonly identified as primary characteristics of autism spectrum disorder (ASD), nor are they well captured in the NIMH's original Research Domain Criteria (RDoC) framework. Here, motor and sensory features performed similarly to RDoC features in support vector classification of 30 ASD youth against 33 typically developing controls. Combining sensory with RDoC features boosted classification performance, achieving a Matthews Correlation Coefficient (MCC) of 0.949 and balanced accuracy (BAcc) of 0.971 (p = 0.00020, calculated against a permuted null distribution). Sensory features alone successfully classified ASD (MCC = 0.565, BAcc = 0.773, p = 0.0222) against a clinically relevant control group of 26 youth with Developmental Coordination Disorder (DCD) and were in fact required to decode against DCD above chance. These findings highlight the importance of sensory and motor features to the ASD phenotype and their relevance to the RDoC framework.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Adolescent
  • Autism Spectrum Disorder / classification*
  • Autism Spectrum Disorder / diagnosis*
  • Case-Control Studies
  • Child
  • Cognition
  • Diagnosis, Differential
  • Female
  • Humans
  • Male
  • Motor Activity
  • Motor Skills Disorders / diagnosis*