Current studies of cell signaling dynamics that use live cell fluorescent biosensors routinely yield thousands of single-cell, heterogeneous, multi-dimensional trajectories. Typically, the extraction of relevant information from time series data relies on predefined, human-interpretable features. Without a priori knowledge of the system, the predefined features may fail to cover the entire spectrum of dynamics. Here we present CODEX, a data-driven approach based on convolutional neural networks (CNNs) that identifies patterns in time series. It does not require a priori information about the biological system and the insights into the data are built through explanations of the CNNs' predictions. CODEX provides several views of the data: visualization of all the single-cell trajectories in a low-dimensional space, identification of prototypic trajectories, and extraction of distinctive motifs. We demonstrate how CODEX can provide new insights into ERK and Akt signaling in response to various growth factors, and we recapitulate findings in p53 and TGFβ-SMAD2 signaling.
Keywords: cell signaling; convolutional neural network; data exploration; live biosensor imaging; time series analysis.
©2021 The Authors. Published under the terms of the CC BY 4.0 license.