Understanding the differences between reactions driven by elevated temperature or electric potential remains challenging, largely due to materials incompatibilities between thermal catalytic and electrocatalytic environments. We show that Ni, N-doped carbon (NiPACN), an electrocatalyst for the reduction of CO2 to CO (CO2 R), can also selectively catalyze thermal CO2 to CO via the reverse water gas shift (RWGS) representing a direct analogy between catalytic phenomena across the two reaction environments. Advanced characterization techniques reveal that NiPACN likely facilitates RWGS on dispersed Ni sites in agreement with CO2 R active site studies. Finally, we construct a generalized reaction driving-force that includes temperature and potential and suggest that NiPACN could facilitate faster kinetics in CO2 R relative to RWGS due to lower intrinsic barriers. This report motivates further studies that quantitatively link catalytic phenomena across disparate reaction environments.
Keywords: carbon dioxide; catalysis; electrochemistry; nitrogen-doped carbon; reverse water-gas shift.
© 2021 Wiley-VCH GmbH.