The chemical composition of hazelnut kernels (Corylus avellana L.) and their COX-2 inhibitory, antimicrobial, and 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical-scavenging activities were investigated. Six previously undescribed indoleacetic acid glycosides, hazelnutins A-F (1-6), and five known compounds (7-11) were isolated from the hazelnut kernels. The structures of compounds 1-6 were successfully identified by high-resolution-electrospray ionization-mass spectrometry and NMR data, and their absolute configurations were established by electron-capture detector spectroscopy analyses in corporation with quantum chemical calculations. Furthermore, the absolute configurations of compounds 7 and 8 were unambiguously confirmed for the first time. Compounds 8-11 were discovered in hazelnut kernels for the first time. Compounds 1-5 inhibited COX-2 expression with inhibition rates ranging from 36.10 to 64.08%. Compounds 3, 4, and 8 could inhibit the proliferation of Candida albicans. Compound 11 exhibited potent antioxidant activity against ABTS and DPPH with IC50 values of 11.22 and 13.21 μmol/L, respectively. Compounds 8 and 10 exhibited moderate antioxidant activity against ABTS.
Keywords: COX-2 inhibition; Corylus avellana L.; anti-inflammation; antimicrobial; antioxidant; hazelnut kernels; hazelnutins A−F (1−6); indoleacetic acid glycosides.