Heat stress during late pregnancy and postpartum influences genetic parameter estimates for birth weight and weight gain in dual-purpose cattle offspring generations

J Anim Sci. 2021 May 1;99(5):skab106. doi: 10.1093/jas/skab106.

Abstract

Impact of direct heat stress (HS) on genetic parameter estimates, i.e., HS close to the trait recording date, was verified in several previous studies conducted in dairy and beef cattle populations. The aim of the present study was to analyze the impact of time-lagged HS at different recording periods during late pregnancy (a.p.) and postpartum (p.p.) on genetic parameter estimates for birth weight (BWT) and weight gain traits (200 d- and 365 d-weight gain (200dg, 365dg)) in offspring of the dual-purpose cattle breed "Rotes Höhenvieh" (RHV). Furthermore, we estimated genetic correlations within traits across time-lagged climatic indicators, in order to proof possible genotype by environment interactions (G×E). Trait recording included 5,434 observations for BWT, 3,679 observations for 200dg and 2,998 observations for 365dg. Time-lagged climatic descriptors were classes for the mean temperature humidity index (mTHI) and number of HS days (nHS) from the following periods: 7 d-period a.p. (BWT), 56 d-period a.p., and 56 d-period p.p. (200dg and 365dg). Genetic parameters were estimated via 2-trait animal models, i.e., defining the same trait in different climatic environments as different traits. Genetic variances and heritabilities for all traits increased with increasing mTHI- and nHS-classes for all recording periods, indicating pronounced genetic differentiation with regard to time-lagged in utero HS and HS directly after birth. Similarly, in low mTHI- and nHS-classes indicating cold stress, genetic variances, and heritabilities were larger than for temperate climates. Genetic correlations substantially smaller than 0.80 indicating G × E were observed when considering same traits from mTHI- and nHS-classes in greater distance. Estimated breeding values (EBV) of the 10 most influential sires with the largest number of offspring records fluctuated across mTHI- and nHS-classes. Correlations between sire EBV for same traits from distant climatic classes confirmed the genetic correlation estimates. Sires displaying stable EBV with climatic alterations were also identified. Selection of those sires might contribute to improved robustness in the RHV outdoor population genetically.

Keywords: dual-purpose cattle; genetic parameters; genotype–environment interaction; time-lagged heat stress.

MeSH terms

  • Animals
  • Birth Weight
  • Cattle / genetics
  • Female
  • Heat-Shock Response
  • Lactation*
  • Milk*
  • Models, Genetic
  • Phenotype
  • Postpartum Period
  • Pregnancy
  • Weight Gain / genetics