Past strong experiences determine acute cardiovascular autonomic responses to acoustic stress

Folia Med Cracov. 2020;60(4):79-95.

Abstract

Background: Stress is a major risk factor for cardiovascular (CV) disease. We hypothesized that past strong experiences might modulate acute CV autonomic responses to an unexpected acoustic stimulus. A i m: The study's aim was to compare acute CV autonomic responses to acoustic stress between students with and without a past strong experience associated with the acoustic stimulus.

Materials and methods: Twenty five healthy young volunteers - medical and non-medical students - were included in the study. CV hemodynamic parameters, heart rate (HR), and blood pressure (BP) variability were assessed for 10 min at rest and for 10 min after two different acoustic stimuli: a standard sound signal and a specific sound signal used during a practical anatomy exam (so-called "pins").

Results: Both sounds stimulated the autonomic nervous system. The "pins" signal caused a stronger increase in HR in medical students (69 ± 10 vs. 73 ± 13 bpm, p = 0.004) when compared to non-medical students (69 ± 6 vs. 70 ± 10, p = 0.695). Rises in diastolic BP, observed 15 seconds after sound stressors, were more pronounced after the "pins" sound than after the standard sound signal only in medical students (3.1% and 1.4% vs. 3% and 4.4%), which was also reflected by low-frequency diastolic BP variability (medical students: 6.2 ± 1.6 vs. 4.1 ± 0.8 ms2, p = 0.04; non-medical students: 6.0 ± 4.3 vs. 4.1 ± 2.6 ms2, p = 0.06).

Conclusions: The "pins" sound, which medical students remembered from their anatomy practical exam, provoked greater sympathetic activity in the medical student group than in their non-medical peers. Thus, past strong experiences modulate CV autonomic responses to acute acoustic stress.

Keywords: autonomic system activity; blood pressure variability; heart rate variability; stress; students.

MeSH terms

  • Acoustic Stimulation
  • Acoustics*
  • Autonomic Nervous System*
  • Blood Pressure
  • Heart Rate
  • Humans