Fluorinated Interface Layer with Embedded Zinc Nanoparticles for Stable Lithium-Metal Anodes

ACS Appl Mater Interfaces. 2021 Apr 21;13(15):17690-17698. doi: 10.1021/acsami.1c02868. Epub 2021 Apr 6.

Abstract

Lithium-metal batteries are promising candidates for the next-generation energy storage devices. However, notorious dendrite growth and an unstable interface between Li and electrolytes severely hamper the practical implantation of Li-metal anodes. Here, a robust solid electrolyte interphase (SEI) layer with flexible organic components on the top and plentiful LiF together with lithiophilic Zn nanoparticles on the bottom is constructed on Li metal based on the spray quenching method. The fluorinated interface layer exhibits remarkable stability to shield Li from the aggressive electrolyte and restrain dendrite growth. Accordingly, the modified Li electrode delivers a stable cycling for over 400 cycles at 3 mA cm-2 in symmetric cells. An improved capacity retention is also achieved in a full cell with a LiFePO4 cathode. This novel design of the artificial SEI layer offers rational guidance for the further development of high-energy-density lithium-metal batteries.

Keywords: dendrite suppression; lithium fluoride; lithium-metal anode; solid electrolyte interphase; spray quenching.