The pig is growing in popularity as an experimental animal because its gyrencephalic brain is similar to humans. Currently, however, there is a lack of appropriate brain templates to support functional and structural neuroimaging pipelines. The primary contribution of this work is an average volume from an iterative, non-linear registration of 70 five- to seven-month-old male Yucatan minipigs. In addition, several aspects of this study are unique, including the comparison of linear and non-linear template generation, the characterization of a large and homogeneous cohort, an analysis of effective resolution after averaging, and the evaluation of potential in-template bias as well as a comparison with a template from another minipig species using a "left-out" validation set. We found that within our highly homogeneous cohort, non-linear registration produced better templates, but only marginally so. Although our T1-weighted data were resolution limited, we preserved effective resolution across the multi-subject average, produced templates that have high gray-white matter contrast and demonstrate superior registration accuracy compared to an alternative minipig template.
Keywords: AFNI; Brain; MRI; Template; Yucatan.
Copyright © 2021 The Authors. Published by Elsevier Inc. All rights reserved.