Longitudinal diffusion MRI analysis using Segis-Net: A single-step deep-learning framework for simultaneous segmentation and registration

Neuroimage. 2021 Jul 15:235:118004. doi: 10.1016/j.neuroimage.2021.118004. Epub 2021 Mar 29.

Abstract

This work presents a single-step deep-learning framework for longitudinal image analysis, coined Segis-Net. To optimally exploit information available in longitudinal data, this method concurrently learns a multi-class segmentation and nonlinear registration. Segmentation and registration are modeled using a convolutional neural network and optimized simultaneously for their mutual benefit. An objective function that optimizes spatial correspondence for the segmented structures across time-points is proposed. We applied Segis-Net to the analysis of white matter tracts from N=8045 longitudinal brain MRI datasets of 3249 elderly individuals. Segis-Net approach showed a significant increase in registration accuracy, spatio-temporal segmentation consistency, and reproducibility compared with two multistage pipelines. This also led to a significant reduction in the sample-size that would be required to achieve the same statistical power in analyzing tract-specific measures. Thus, we expect that Segis-Net can serve as a new reliable tool to support longitudinal imaging studies to investigate macro- and microstructural brain changes over time.

Keywords: CNN; Deep learning; Diffusion MRI; Longitudinal; Registration; Segmentation; White matter tract.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Aged
  • Aged, 80 and over
  • Deep Learning*
  • Diffusion Magnetic Resonance Imaging / methods*
  • Female
  • Humans
  • Image Interpretation, Computer-Assisted / methods*
  • Image Processing, Computer-Assisted / methods*
  • Longitudinal Studies
  • Male
  • Middle Aged
  • White Matter / anatomy & histology*
  • White Matter / diagnostic imaging