Using image data to numerically correct the jitter in polarization depth encoding PS-OCT

Opt Lett. 2021 Apr 1;46(7):1692-1695. doi: 10.1364/OL.420029.

Abstract

In swept source polarization depth encoding polarization sensitive optical coherence tomography (PS-OCT), the laser jitter induces additional noise to the polarization sensitive measurement. In this Letter, we developed a numerical algorithm to correct the jitter phases based on the image data using the Mueller matrix calculus. The algorithm was demonstrated on in vivo retina imaging of a guinea pig with a custom-built PS-OCT system. The performance of the proposed algorithm was almost comparable to the conventional method of using a physical calibration signal. By not requiring a hardware generated calibration signal and k-clock, the proposed algorithm is useful to reduce the complexity and the cost of a polarization depth encoding PS-OCT system.