The variant gambit: COVID-19's next move

Cell Host Microbe. 2021 Apr 14;29(4):508-515. doi: 10.1016/j.chom.2021.02.020. Epub 2021 Mar 1.

Abstract

More than a year after its emergence, COVID-19, the disease caused by SARS-CoV-2, continues to plague the world and dominate our daily lives. Even with the development of effective vaccines, this coronavirus pandemic continues to cause a fervor with the identification of major new variants hailing from the United Kingdom, South Africa, Brazil, and California. Coupled with worries over a distinct mink strain that has caused human infections and potential for further mutations, SARS-CoV-2 variants bring concerns for increased spread and escape from both vaccine and natural infection immunity. Here, we outline factors driving SARS-CoV-2 variant evolution, explore the potential impact of specific mutations, examine the risk of further mutations, and consider the experimental studies needed to understand the threat these variants pose. In this review, Plante et al. examine SARS-CoV-2 variants including B.1.1.7 (UK), B.1.351 (RSA), P.1 (Brazil), and B.1.429 (California). They focus on what factors contribute to variant emergence, mutations in and outside the spike protein, and studies needed to understand the impact of variants on infection, transmission, and vaccine efficacy.

Keywords: 2019-nCoV; COVID-19; SARS-CoV-2; coronavirus; furin cleavage; spike.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Humans
  • Mutation*
  • SARS-CoV-2 / genetics*
  • SARS-CoV-2 / immunology
  • Spike Glycoprotein, Coronavirus / chemistry
  • Spike Glycoprotein, Coronavirus / genetics*
  • Spike Glycoprotein, Coronavirus / immunology

Substances

  • Spike Glycoprotein, Coronavirus
  • spike protein, SARS-CoV-2