In pursuit of advanced heterogeneous photocatalysts, ZnO has emerged as a promising option for solar-driven heterogeneous photocatalyst with many advantageous properties (e.g., optical band structure and electronic properties). However, as the efficacy of such system can also be limited by a number of demerits (e.g., fast recombination of charge carriers and limited photon absorption), considerable efforts are needed for its effective and practical scale-up. This article provides a detailed literature review of the synthesis and modification of ZnO nanostructures with tuned band structures and controllable morphologies for solar light harvesting. The potential of anisotropic ZnO nanostructures is also discussed with respect to the photocatalytic degradation of organic/inorganic water pollutants. Further, the role of various metal dopants is discussed for the enhancement of photocatalytic activity along with evaluation of their photocatalytic performances under UV-visible or solar irradiation. Finally, our discussions are expanded to describe the prospects of developed ZnO nano-photocatalysts for real-world applications with respect to light-harvesting efficiency and mechanical stability.
Keywords: Controllable morphologies; Performance evaluation; Photocatalysis; Zinc oxide.
Copyright © 2021 Elsevier B.V. All rights reserved.