Habitat loss and alteration has driven many species into decline, often to the point of requiring protection and intervention to avert extinction. Genomic data provide the opportunity to inform conservation and recovery efforts with details about vital evolutionary processes with a resolution far beyond that of traditional genetic approaches. The tricolored blackbird (Agelaius tricolor) has suffered severe losses during the previous century largely due to anthropogenic impacts on their habitat. Using a dataset composed of a whole genome paired with reduced representation libraries (RAD-Seq) from samples collected across the species' range, we find evidence for panmixia using multiple methods, including PCA (no geographic clustering), admixture analyses (ADMIXTURE and TESS conclude K = 1), and comparisons of genetic differentiation (average FST = 0.029). Demographic modeling approaches recovered an ancient decline that had a strong impact on genetic diversity but did not detect any effect from the known recent decline. We also did not detect any evidence for selection, and hence adaptive variation, at any site, either geographic or genomic. These results indicate that species continues to have high vagility across its range despite population decline and habitat loss and should be managed as a single unit.
Keywords: conservation genetics; demographic modeling; effective population size; gene flow; genomics; habitat loss; threatened species.
© 2020 The Authors. Evolutionary Applications published by John Wiley & Sons Ltd.