Stabilizing black-phase formamidinium perovskite formation at room temperature and high humidity

Science. 2021 Mar 26;371(6536):1359-1364. doi: 10.1126/science.abf7652.

Abstract

The stabilization of black-phase formamidinium lead iodide (α-FAPbI3) perovskite under various environmental conditions is considered necessary for solar cells. However, challenges remain regarding the temperature sensitivity of α-FAPbI3 and the requirements for strict humidity control in its processing. Here we report the synthesis of stable α-FAPbI3, regardless of humidity and temperature, based on a vertically aligned lead iodide thin film grown from an ionic liquid, methylamine formate. The vertically grown structure has numerous nanometer-scale ion channels that facilitate the permeation of formamidinium iodide into the lead iodide thin films for fast and robust transformation to α-FAPbI3 A solar cell with a power-conversion efficiency of 24.1% was achieved. The unencapsulated cells retain 80 and 90% of their initial efficiencies for 500 hours at 85°C and continuous light stress, respectively.

Publication types

  • Research Support, Non-U.S. Gov't