Objectives: Endovascular treatment (EVT) has become the standard of care for acute ischemic stroke. Despite successful recanalization, a limited subset of patients benefits from the new treatment. Human MRI studies have shown that during removal of the thrombus, a shower of microclots is released from the initial thrombus, possibly causing new ischemic lesions. The aim of the current study is to quantify tissue damage following microembolism.
Materials and methods: In a rat model, microembolism was generated by injection of a mixture of polystyrene fluorescent microspheres (15, 25 and 50 µm in diameter). The animals were killed at three time-points: day 1, 3 or 7. AMIRA and IMARIS software was used for 3D reconstruction of brain structure and damage, respectively.
Conclusions: Microembolism induces ischemia, hypoxia and infarction. Infarcted areas persist, but hypoxic regions recover over time suggesting that repair processes in the brain rescue the regions at risk.
Keywords: Hypoxia; Infarction; Ischemia; Microembolism; Stroke.
Copyright © 2021 The Authors. Published by Elsevier Inc. All rights reserved.