A novel 'smart' PNIPAM-based copolymer for breast cancer targeted therapy: Synthesis, and characterization of dual pH/temperature-responsive lactoferrin-targeted PNIPAM-co-AA

Colloids Surf B Biointerfaces. 2021 Jun:202:111694. doi: 10.1016/j.colsurfb.2021.111694. Epub 2021 Mar 13.

Abstract

Despite the active research towards introducing novel anticancer agents, the long-term sequelae and side effects of chemotherapy remain the major obstacle to achieving clinical success. Recent cancer research is now utilizing the medicinal chemistry toolbox to tailor novel 'smart' carrier systems that can reduce the major limitations of chemotherapy ranging from non-specificity and ubiquitous biodistribution to systemic toxicity. In this aspect, various stimuli-responsive polymers have gained considerable interest due to their intrinsic tumor targeting properties. Among these polymers, poly(N-isopropylacrylamide (PNIPAM) has been chemically modified to tune its thermoresponsivity or even copolymerized to endow new stimulus responsiveness for enhancing tumor targeting. Herein, we set our design rationale to impart additional active targeting entity to pH/temperature-responsive PNIPAM-based polymer for more efficient controlled payloads accumulation at the tumor through cellular internalization via synthesizing novel "super intelligent" lactoferrin conjugated PNIPAM-acrylic acid (LF-PNIPAM-co-AA) copolymer. The synthesized copolymer was physicochemically characterized and evaluated as a smart nanocarrier for targeting breast cancer. In this regard, Honokiol (HK) was utilized as a model anticancer drug and encapsulated in the nanoparticles to overcome its lipophilic nature and allow its parenteral administration, for achieving sustainable drug release with targeting action. Results showed that the developed HK-loaded LF-PNIPAM-co-AA nanohydrogels displayed high drug loading capacity reaching to 18.65 wt.% with excellent physical and serum stability. Moreover, the prepared HK-loaded nanohydrogels exhibited efficient in vitro and in vivo antitumor activities. In vivo, HK-loaded nanohydrogels demonstrated suppression of VEGF-1 and Ki-67 expression levels, besides inducing apoptosis through upregulating the expression level of active caspase-3 in breast cancer-bearing mice. Overall, the developed nanohydrogels (NGs) with pH and temperature responsivity provide a promising nanocarrier for anticancer treatment.

Keywords: Breast cancer; Honokiol; Lactoferrin; PNIPAM; Smart polymers.

MeSH terms

  • Acrylic Resins
  • Animals
  • Drug Carriers
  • Hydrogen-Ion Concentration
  • Lactoferrin*
  • Mice
  • Neoplasms*
  • Polymers
  • Temperature
  • Tissue Distribution

Substances

  • Acrylic Resins
  • Drug Carriers
  • Polymers
  • poly-N-isopropylacrylamide
  • Lactoferrin