Semiconductor saturable absorber mirrors (SESAMs) are widely used for modelocking of various ultrafast lasers. The growing interest for SESAM-modelocked lasers in the short-wave infrared and mid-infrared regime requires precise characterization of SESAM parameters. Here, we present two SESAM characterization setups for a wavelength range of 1.9 to 3 µm to precisely measure both nonlinear reflectivity and time-resolved recovery dynamics. For the nonlinear reflectivity measurement, a high accuracy (<0.04%) over a wide fluence range (0.1-1500 µJ/cm2) is achieved. Time-resolved pump-probe measurements have a resolution of about 100 fs and a scan range of up to 680 ps. Using the two setups, we have fully characterized three different GaSb-SESAMs at an operation wavelength of 2.05 µm fabricated in the FIRST lab at ETH Zurich. The results show excellent performance suitable for modelocking diode-pumped solid-state and semiconductor disk lasers. We have measured saturation fluences of around 4 µJ/cm2, modulation depths varying from 1% to 2.4%, low non-saturable losses (∼ 0.2%) and sufficiently fast recovery times (< 32 ps). The predicted influence of Auger recombination in the GaSb material system is also investigated.