Dysregulation of IL-17/IL-22 Effector Functions in Blood and Gut Mucosal Gamma Delta T Cells Correlates With Increase in Circulating Leaky Gut and Inflammatory Markers During cART-Treated Chronic SIV Infection in Macaques

Front Immunol. 2021 Feb 25:12:647398. doi: 10.3389/fimmu.2021.647398. eCollection 2021.

Abstract

HIV-associated inflammation has been implicated in the premature aging and increased risk of age-associated comorbidities in cART-treated individuals. However, the immune mechanisms underlying the chronic inflammatory state of cART-suppressed HIV infection remain unclear. Here, we investigated the role of γδT cells, a group of innate IL-17 producing T lymphocytes, in the development of systemic inflammation and leaky gut phenotype during cART-suppressed SIV infection of macaques. Plasma levels of inflammatory mediators, intestinal epithelial barrier disruption (IEBD) and microbial translocation (MT) biomarkers, and Th1/Th17-type cytokine functions were longitudinally assessed in blood and gut mucosa of SIV-infected, cART-suppressed macaques. Among the various gut mucosal IL-17/IL-22-producing T lymphocyte subsets including Th17, γδT, CD161+ CD8+ T, and MAIT cells, a specific decline in the Vδ2 subset of γδT cells and impaired IL-17/IL-22 production in γδT cells significantly correlated with the subsequent increase in plasma IEBD/MT markers (IFABP, LPS-binding protein, and sCD14) and pro-inflammatory cytokines (IL-6, IL-1β, IP10, etc.) despite continued viral suppression during long-term cART. Further, the plasma inflammatory cytokine signature during long-term cART was distinct from acute SIV infection and resembled the inflammatory cytokine profile of uninfected aging (inflammaging) macaques. Overall, our data suggest that during cART-suppressed chronic SIV infection, dysregulation of IL-17/IL-22 cytokine effector functions and decline of Vδ2 γδT cell subsets may contribute to gut epithelial barrier disruption and development of a distinct plasma inflammatory signature characteristic of inflammaging. Our results advance the current understanding of the impact of chronic HIV/SIV infection on γδT cell functions and demonstrate that in the setting of long-term cART, the loss of epithelial barrier-protective functions of Vδ2 T cells and ensuing IEBD/MT occurs before the hallmark expansion of Vδ1 subsets and skewed Vδ2/Vδ1 ratio. Thus, our work suggests that novel therapeutic approaches toward restoring IL-17/IL-22 cytokine functions of intestinal Vδ2 T cells may be beneficial in preserving gut epithelial barrier function and reducing chronic inflammation in HIV-infected individuals.

Keywords: IFABP; LBP; SIV; gammadelta T cells; intestinal epithelial barrier disruption; sCD14.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, N.I.H., Intramural

MeSH terms

  • Animals
  • Anti-Retroviral Agents / therapeutic use*
  • Biomarkers / blood
  • Chronic Disease / drug therapy
  • Drug Therapy, Combination / methods
  • Female
  • Inflammation / blood
  • Inflammation / immunology
  • Interleukin-17 / blood*
  • Interleukin-22
  • Interleukins / blood*
  • Intestinal Mucosa / immunology*
  • Intraepithelial Lymphocytes / immunology*
  • Macaca mulatta
  • Monkey Diseases / drug therapy*
  • Monkey Diseases / immunology*
  • Monkey Diseases / virology
  • Signal Transduction / immunology
  • Simian Acquired Immunodeficiency Syndrome / blood
  • Simian Acquired Immunodeficiency Syndrome / drug therapy*
  • Simian Acquired Immunodeficiency Syndrome / immunology*
  • Simian Acquired Immunodeficiency Syndrome / virology
  • Simian Immunodeficiency Virus*

Substances

  • Anti-Retroviral Agents
  • Biomarkers
  • Interleukin-17
  • Interleukins