An Antifungal Polycyclic Tetramate Macrolactam, Heat-Stable Antifungal Factor (HSAF), Is a Novel Oxidative Stress Modulator in Lysobacter enzymogenes

Appl Environ Microbiol. 2021 Apr 27;87(10):e03105-20. doi: 10.1128/AEM.03105-20. Print 2021 Apr 27.

Abstract

Polycyclic tetramate macrolactams (PoTeMs) are a fast-growing family of antibiotic natural products found in phylogenetically diverse microorganisms. Surprisingly, none of the PoTeMs have been investigated for potential physiological functions in their producers. Here, we used heat-stable antifungal factor (HSAF), an antifungal PoTeM from Lysobacter enzymogenes, as a model to show that PoTeMs form complexes with iron ions, with an association constant (Ka ) of 2.71 × 106 M-1 The in vivo and in vitro data showed formation of 2:1 and 3:1 complexes between HSAF and iron ions, which were confirmed by molecular mechanical and quantum mechanical calculations. HSAF protected DNA from degradation in high concentrations of iron and H2O2 or under UV radiation. HSAF mutants of L. enzymogenes barely survived under oxidative stress and exhibited markedly increased production of reactive oxygen species (ROS). Exogenous addition of HSAF into the mutants significantly prevented ROS production and restored normal growth in the mutants under the oxidative stress. The results reveal that the function of HSAF is to protect the producer microorganism from oxidative damage rather than as an iron-acquisition siderophore. The characteristic structure of PoTeMs, a 2,4-pyrrolidinedione-embedded macrolactam, may represent a new iron-chelating scaffold of microbial metabolites. The study demonstrated a previously unrecognized strategy for microorganisms to modulate oxidative damage to the cells.IMPORTANCE PoTeMs are a family of structurally distinct metabolites that have been found in a large number of bacteria. Although PoTeMs exhibit diverse therapeutic properties, the physiological function of PoTeMs in the producer microorganisms had not been investigated. HSAF from Lysobacter enzymogenes is an antifungal PoTeM that has been subjected to extensive studies for mechanisms of biosynthesis, regulation, and antifungal activity. Using HSAF as a model system, we here showed that the characteristic structure of PoTeMs, a 2,4-pyrrolidinedione-embedded macrolactam, may represent a new iron-chelating scaffold of microbial metabolites. In L. enzymogenes, HSAF functions as a small-molecule modulator for oxidative damage caused by iron, H2O2, and UV light. Together, the study demonstrated a previously unrecognized strategy for microorganisms to modulate oxidative damage to the cells. HSAF represents the first member of the fast-growing PoTeM family of microbial metabolites whose potential biological function has been studied.

Keywords: Lysobacter enzymogenes; iron binding; natural products; oxidative damage; polycyclic tetramate macrolactams.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Ferrous Compounds / pharmacology
  • Hydrogen Peroxide / pharmacology
  • Lactams, Macrocyclic / metabolism*
  • Lysobacter / drug effects
  • Lysobacter / metabolism*
  • Lysobacter / radiation effects
  • Oxidative Stress / drug effects
  • Oxidative Stress / radiation effects
  • Reactive Oxygen Species / metabolism
  • Ultraviolet Rays

Substances

  • Ferrous Compounds
  • HSAF compound
  • Lactams, Macrocyclic
  • Reactive Oxygen Species
  • ferrous sulfate
  • Hydrogen Peroxide

Supplementary concepts

  • Lysobacter enzymogenes