Background: Parcellation of the cerebral cortex serves the investigation of the emergence of uniquely human brain functions and disorders. Transcriptome data enable the characterization of the molecular properties of cortical areas in unprecedented detail. Previously, we predicted the expression of 18,686 genes in the entire human brain based on microarray data. Here, we employed these data to parcellate the cortex and study the regional enrichment of disease-associated genes.
Methods: We performed agglomerative hierarchical clustering based on normalized transcriptome data to delineate areas with distinct gene expression profiles. Subsequently, we tested these profiles for the enrichment of gene sets associated with brain disorders by genome-wide association studies and expert-curated databases using gene set enrichment analysis.
Results: Transcriptome-based parcellation identified borders in line with major anatomical landmarks and the functional differentiation of primary motor, somatosensory, visual, and auditory areas. Gene set enrichment analysis based on curated databases suggested new roles of specific areas in psychiatric and neurological disorders while reproducing well-established links for movement and neurodegenerative disorders, for example, amyotrophic lateral sclerosis (motor cortex) and Alzheimer's disease (entorhinal cortex). Meanwhile, gene sets derived from genome-wide association studies on psychiatric disorders exhibited similar enrichment patterns driven by pleiotropic genes expressed in the posterior fusiform gyrus and inferior parietal lobule.
Conclusions: The identified enrichment patterns suggest the vulnerability of specific cortical areas to various influences that might alter the risk of developing one or several brain disorders. For several diseases, specific genes were highlighted, which could lead to the discovery of novel disease mechanisms and urgently needed treatments.
Keywords: Cerebral cortex; Clustering; Gene set enrichment analysis; Gene-disease association; Parcellation; mRNA.
Copyright © 2021. Published by Elsevier Inc.