RAF-Mutant Melanomas Differentially Depend on ERK2 Over ERK1 to Support Aberrant MAPK Pathway Activation and Cell Proliferation

Mol Cancer Res. 2021 Jun;19(6):1063-1075. doi: 10.1158/1541-7786.MCR-20-1022. Epub 2021 Mar 11.

Abstract

Half of advanced human melanomas are driven by mutant BRAF and dependent on MAPK signaling. Interestingly, the results of three independent genetic screens highlight a dependency of BRAF-mutant melanoma cell lines on BRAF and ERK2, but not ERK1. ERK2 is expressed higher in melanoma compared with other cancer types and higher than ERK1 within melanoma. However, ERK1 and ERK2 are similarly required in primary human melanocytes transformed with mutant BRAF and are expressed at a similar, lower amount compared with established cancer cell lines. ERK1 can compensate for ERK2 loss as seen by expression of ERK1 rescuing the proliferation arrest mediated by ERK2 loss (both by shRNA or inhibition by an ERK inhibitor). ERK2 knockdown, as opposed to ERK1 knockdown, led to more robust suppression of MAPK signaling as seen by RNA-sequencing, qRT-PCR, and Western blot analysis. In addition, treatment with MAPK pathway inhibitors led to gene expression changes that closely resembled those seen upon knockdown of ERK2 but not ERK1. Together, these data demonstrate that ERK2 drives BRAF-mutant melanoma gene expression and proliferation as a function of its higher expression compared with ERK1. Selective inhibition of ERK2 for the treatment of melanomas may spare the toxicity associated with pan-ERK inhibition in normal tissues. IMPLICATIONS: BRAF-mutant melanomas overexpress and depend on ERK2 but not ERK1, suggesting that ERK2-selective inhibition may be toxicity sparing.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Cell Line, Tumor
  • Cell Proliferation / drug effects
  • Cell Proliferation / genetics*
  • Cell Survival / drug effects
  • Cell Survival / genetics
  • Cells, Cultured
  • Gene Expression Regulation, Neoplastic
  • HEK293 Cells
  • Humans
  • MAP Kinase Signaling System / drug effects
  • MAP Kinase Signaling System / genetics*
  • Melanoma / genetics*
  • Melanoma / metabolism
  • Melanoma / pathology
  • Mitogen-Activated Protein Kinase 1 / antagonists & inhibitors
  • Mitogen-Activated Protein Kinase 1 / genetics*
  • Mitogen-Activated Protein Kinase 1 / metabolism
  • Mitogen-Activated Protein Kinase 3 / antagonists & inhibitors
  • Mitogen-Activated Protein Kinase 3 / genetics*
  • Mitogen-Activated Protein Kinase 3 / metabolism
  • Mutation*
  • Protein Kinase Inhibitors / pharmacology
  • Proto-Oncogene Proteins B-raf / genetics*
  • Proto-Oncogene Proteins B-raf / metabolism
  • RNA Interference
  • RNA-Seq / methods

Substances

  • Protein Kinase Inhibitors
  • Proto-Oncogene Proteins B-raf
  • MAPK1 protein, human
  • MAPK3 protein, human
  • Mitogen-Activated Protein Kinase 1
  • Mitogen-Activated Protein Kinase 3