Evolution of water conservation in humans

Curr Biol. 2021 Apr 26;31(8):1804-1810.e5. doi: 10.1016/j.cub.2021.02.045. Epub 2021 Mar 5.

Abstract

To sustain life, humans and other terrestrial animals must maintain a tight balance of water gain and water loss each day.1-3 However, the evolution of human water balance physiology is poorly understood due to the absence of comparative measures from other hominoids. While humans drink daily to maintain water balance, rainforest-living great apes typically obtain adequate water from their food and can go days or weeks without drinking4-6. Here, we compare isotope-depletion measures of water turnover (L/d) in zoo- and rainforest-sanctuary-housed apes (chimpanzees, bonobos, gorillas, and orangutans) with 5 diverse human populations, including a hunter-gatherer community in a semi-arid savannah. Across the entire sample, water turnover was strongly related to total energy expenditure (TEE, kcal/d), physical activity, climate (ambient temperature and humidity), and fat free mass. In analyses controlling for those factors, water turnover was 30% to 50% lower in humans than in other apes despite humans' greater sweating capacity. Water turnover in zoo and sanctuary apes was similar to estimated turnover in wild populations, as was the ratio of water intake to dietary energy intake (∼2.8 mL/kcal). However, zoo and sanctuary apes ingested a greater ratio of water to dry matter of food, which might contribute to digestive problems in captivity. Compared to apes, humans appear to target a lower ratio of water/energy intake (∼1.5 mL/kcal). Water stress due to changes in climate, diet, and behavior apparently led to previously unknown water conservation adaptations in hominin physiology.

Keywords: doubly labeled water; drinking; hominin evolution; hominoid evolution; hydration; water turnover.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Conservation of Water Resources*
  • Energy Metabolism
  • Hominidae
  • Humans
  • Pan paniscus
  • Pan troglodytes
  • Pongo