The incidence and mortality rates of lung cancers are different between females and males. Therefore, sex information should be an important part of how to train and optimize a diagnostic model. However, most of the existing studies do not fully utilize this information. This study carried out a comparative investigation between sex-specific models and sex-independent models. Three feature selection algorithms and five classifiers were utilized to evaluate the contribution of the sex information to the detection of early-stage lung cancers. Both lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC) showed that the sex-specific models outperformed the sex-independent detection of early-stage lung cancers. The Venn plots suggested that females and males shared only a few transcriptomic biomarkers of early-stage lung cancers. Our experimental data suggested that sex information should be included in optimizing disease diagnosis models.
Keywords: LUAD; LUSC; early stage; sex disparity; transcriptomic biomarker.