Immunotherapy (IT) and targeted therapy (TT) are both effective against melanoma, but their combination is frequently toxic. Here, we investigated whether the sequence of IT (anti-PD-1)→ TT (ceritinib-trametinib or dabrafenib-trametinib) was associated with improved antitumor responses in mouse models of BRAF- and NRAS-mutant melanoma. Mice with NRAS-mutant (SW1) or BRAF-mutant (SM1) mouse melanomas were treated with either IT, TT, or the sequence of IT→TT. Tumor volumes were measured, and samples from the NRAS-mutant melanomas were collected for immune-cell analysis, single-cell RNA sequencing (scRNA-seq), and reverse phase protein analysis (RPPA). scRNA-seq demonstrated that the IT→TT sequence modulated the immune environment, leading to increased infiltration of T cells, monocytes, dendritic cells and natural killer cells, and decreased numbers of tumor-associated macrophages, myeloid-derived suppressor cells, and regulatory T cells. Durable responses to the IT→TT sequence were dependent on T-cell activity, with depletion of CD8+, but not CD4+, T cells abrogating the therapeutic response. An analysis of transcriptional heterogeneity in the melanoma compartment showed the sequence of IT→TT enriched for a population of melanoma cells with increased expression of MHC class I and melanoma antigens. RPPA analysis demonstrated that the sustained immune response induced by IT→TT suppressed tumor-intrinsic signaling pathways required for therapeutic escape. These studies establish that upfront IT improves the responses to TT in BRAF- and NRAS-mutant melanoma models.
©2021 American Association for Cancer Research.