Tuning morphology, surface, and nanocrystallinity of rare earth vanadates by one-pot colloidal conversion of hydroxycarbonates

Nanoscale. 2021 Mar 7;13(9):4931-4945. doi: 10.1039/d0nr07902b. Epub 2021 Feb 25.

Abstract

We show that particle size, morphology, nanocrystallinity, surface area, and defect density of (Y,Eu)VO4 structures can be tuned by one-pot colloidal conversion of rare earth hydroxycarbonates in water/ethylene glycol (EG) suspensions. Using small angle X-ray scattering, transmission electron microscopy and dynamic light scattering, we show how volume fractions of EG direct the amorphous to crystalline conversion at 1 atm/95 °C by controlling size and aggregation of hydroxycarbonate precursors. A template effect due to a Kirkendall-type conversion occurs for low EG contents, yielding solids with high densities of oxygen defects, as demonstrated by O2 uptakes in thermogravimetry and X-ray photoelectron spectroscopy profiles. Starting from small and aggregated hydroxycarbonates high-porosity (Y,Eu)VO4 nanoparticles were produced with expanded unit cells and short-range (<100 Å) crystalline ordering. We explored the effects of synthesis on the textural, microstructure, and defects of (Y,Eu)VO4 solids, which were further correlated to the spectroscopic profiles of Eu3+-activated samples. We show that the ratios between Eu3+ 5D0 internal quantum yields and particle diameters can be directly correlated to the particle surface areas, opening new perspectives for theoretical detailing of f-f luminescence in YVO4 solids, and enabling accurate tuning of structure and applicability of colloidal vanadate nanoparticles for sensing and catalysis applications.