MEDALT: single-cell copy number lineage tracing enabling gene discovery

Genome Biol. 2021 Feb 23;22(1):70. doi: 10.1186/s13059-021-02291-5.

Abstract

We present a Minimal Event Distance Aneuploidy Lineage Tree (MEDALT) algorithm that infers the evolution history of a cell population based on single-cell copy number (SCCN) profiles, and a statistical routine named lineage speciation analysis (LSA), whichty facilitates discovery of fitness-associated alterations and genes from SCCN lineage trees. MEDALT appears more accurate than phylogenetics approaches in reconstructing copy number lineage. From data from 20 triple-negative breast cancer patients, our approaches effectively prioritize genes that are essential for breast cancer cell fitness and predict patient survival, including those implicating convergent evolution.The source code of our study is available at https://github.com/KChen-lab/MEDALT .

Keywords: Copy number alteration; Driver discovery; Lineage tracing; Single-cell; Tumor evolution; scDNA-seq; scRNA-seq.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Algorithms
  • Aneuploidy*
  • Computational Biology / methods*
  • Evolution, Molecular
  • Gene Dosage*
  • Genetic Association Studies
  • Genetic Fitness
  • Genetic Predisposition to Disease
  • High-Throughput Nucleotide Sequencing
  • Humans
  • RNA-Seq* / methods
  • Single-Cell Analysis* / methods
  • Software*