PD-1/PDL1 Blockade Exacerbates Pancreatic Damage and Immune Response in a Mouse Model of Acute Pancreatitis

Inflammation. 2021 Aug;44(4):1441-1451. doi: 10.1007/s10753-021-01430-1. Epub 2021 Feb 18.

Abstract

Programmed necrosis factor 1 (PD-1) is significantly overexpressed in lymphocytes, neutrophils, and macrophages and has been studied in depth in tumors. As a member of the negative costimulatory family of immune regulatory molecules, expression of PD-1 and its primary regulatory pathway are related to immune cells. Recently, PD-1 was demonstrated to be clinically important in inflammatory diseases, such as multiple sclerosis, glomerulonephritis, and inflammatory bowel disease. PD-1, a negative regulator molecule, was recently found to protect tissues from the inflammatory response and inflammatory cell infiltration. Conversely, PD-1 deficiency may contribute to the occurrence of a diverse array of inflammatory diseases. However, whether PD-1 regulates the pathogenesis of acute pancreatitis (AP) is unclear. AP is a noninfectious inflammatory disease with primary pathological manifestations that include edema, inflammatory cell infiltration, and acinar cell necrosis. Among these features, costimulatory molecules including PD-1/PDL1 play a critical role in the regulation of immune response and immune activation. Here, we first found that PD-1 is notably upregulated in neutrophils and macrophages in peripheral blood and pancreatic injury tissue in AP mice. PD-1 gene deficiency exacerbated pancreatic injury in an experimental mouse model of AP. We observed more severe pancreatic injury in PD-1-deficient mice than in control mice, including increased pancreatic edema, inflammatory cells, infiltration, and acinar cell necrosis. We also found that PD-1-deficient mice exhibited higher levels of serum enzymology and inflammatory factors in AP. Furthermore, PD-1/PDL1 neutralizing antibodies significantly aggravated pancreatic and lung injury and increased serum inflammatory cytokine levels. These findings were consistent with those in PD-1-deficient mice. In summary, PD-1 may protect against AP in mice and act as a potential target for the prevention of AP in the future.

Keywords: PD-1; acute pancreatitis; immunocyte; pancreatic injury.

MeSH terms

  • Animals
  • Antibodies, Monoclonal, Humanized / pharmacology
  • B7-H1 Antigen / deficiency*
  • B7-H1 Antigen / genetics
  • Disease Models, Animal
  • Immunity, Cellular / physiology*
  • Macrophages / drug effects
  • Macrophages / immunology
  • Macrophages / metabolism
  • Male
  • Mice
  • Mice, Inbred C57BL
  • Mice, Knockout
  • Neutrophils / drug effects
  • Neutrophils / immunology
  • Neutrophils / metabolism
  • Pancreas / immunology
  • Pancreas / metabolism*
  • Pancreatitis / genetics
  • Pancreatitis / immunology
  • Pancreatitis / metabolism*
  • Programmed Cell Death 1 Receptor / deficiency*
  • Programmed Cell Death 1 Receptor / genetics

Substances

  • Antibodies, Monoclonal, Humanized
  • B7-H1 Antigen
  • Cd274 protein, mouse
  • Pdcd1 protein, mouse
  • Programmed Cell Death 1 Receptor