Surface-aerosol stability and pathogenicity of diverse MERS-CoV strains from 2012 - 2018

bioRxiv [Preprint]. 2021 Feb 12:2021.02.11.429193. doi: 10.1101/2021.02.11.429193.

Abstract

Middle East Respiratory Syndrome coronavirus (MERS-CoV) is a coronavirus that infects both humans and dromedary camels and is responsible for an ongoing outbreak of severe respiratory illness in humans in the Middle East. While some mutations found in camel-derived MERS-CoV strains have been characterized, the majority of natural variation found across MERS-CoV isolates remains unstudied. Here we report on the environmental stability, replication kinetics and pathogenicity of several diverse isolates of MERS-CoV as well as SARS-CoV-2 to serve as a basis of comparison with other stability studies. While most of the MERS-CoV isolates exhibited similar stability and pathogenicity in our experiments, the camel derived isolate, C/KSA/13, exhibited reduced surface stability while another camel isolate, C/BF/15, had reduced pathogenicity in a small animal model. These results suggest that while betacoronaviruses may have similar environmental stability profiles, individual variation can influence this phenotype, underscoring the importance of continual, global viral surveillance.

Publication types

  • Preprint